Химия поверхности твердых тел

к.х.н. Нартова Анна Владимировна.

Наука о поверхности (Surface Science)

Поверхность - граница раздела двух сред.

Для изучения поверхности необходимо рассматривать ее в совокупности с обеими фазами, границей между которыми она является! [1]

[1] Лифшиц В.Г., Репинский С.М. Процессы на поверхности твердых тел. Владивосток: Дальнаука. 2003. 704 с.

Поверхностное натяжение

Компонента давления Р_{xx} есть сила, приложенная в направлении оси x к единичной площадке на плоскости, нормаль к которой направлена по оси x; компонента давления Р_{xy} есть сила, приложенная в направлении оси x к единичной площадке на плоскости, нормаль к которой направлена по оси y.

$$P_T = P_{xx} = P_{yy}$$
$$P_N = P_{zz}.$$

Поверхностное натяжение

$$\sigma \equiv \int_{-\infty}^{\infty} (P_N - P_T) dz$$

Поверхностное натяжение

-Обусловлено различием сил межмолекулярного взаимодействия на границе раздела двух фаз, благодаря чему в тонком пограничном слое появляется нескомпенсированная свободная поверхностная энергия.

-Удельная поверхностная энергия эквивалентна *работе*, расходуемой на обратимое изотермическое образование единицы площади свободной поверхности (Дж/м²).

-Удельная поверхностная энергия численно совпадает с коэффициентом поверхностного натяжения (Н/м).

Капля жидкости на плоской поверхности

смачивание

несмачивание

Когезия - Адгезия

Работа разрыва столбика жидкости единичного сечения

Мера межмолекулярного взаимодействия в объеме гомогенной конденсированной фазы. Мера интенсивности взаимодействия двух контактирующих фаз.

 $W_a/W_k = 0.5(1+\cos\theta)$ или $\cos\theta = 2W_a/W_k - 1 = W_a/\sigma_{nx} - 1$.

Уравнение Вульфа

Габитус (habitus-внешность) - наружный вид кристаллов, определяемый преобладающим развитием граней тех или иных простых форм.

Уравнение Вульфа

В ходе роста кристалла кристаллизация в первую очередь происходит на неустойчивых гранях (с большими значениями σ), а наслоение на стабильных гранях отстает.

Менее устойчивые грани исчезают, а стабильные увеличиваются в размерах.

В итоге поверхность кристалла образована гранями с наименьшей скоростью роста.

Особенности роста кристаллических частиц

Система: «хозяин» - поверхность кристалла того же вещества. Классическая теория роста кристаллов Косселя-Странского

Медленный (квазиравновесный) рост монокристалла осуществляется путем последовательного наращивания монослоев на гранях, в результате эти грани передвигаются в направлении своих нормалей, оставаясь параллельными самим себе. Форма монокристаллов стремится к равновесной по правилу Вульфа.

Различные места осаждения элементов ионной решетки NaCl. Выделение энергии ϕ_n при осаждении в местах типа n (в отн.ед.): ϕ_1 =1.0, ϕ_2 =2.7, ϕ_3 =13.2, ϕ_4 =7.5, ϕ_5 =3.7, ϕ_6 =1.3.

Образование винтовой дислокации

Скольжение произошло в плоскости *ABCD* в направлении вектора скольжения. Дислокационная линия *AB*, которая показывает границу нарушений решетки, параллельна вектору скольжения.

Последовательные ступени роста по механизму винтовой дислокации

Видно, как ступень *AD,* закручивается в спираль, растущую вокруг начала дислокации.

Ступени роста по механизму винтовой дислокации

Спираль роста на грани кристалла н-парафина, образовавшаяся из одной винтовой дислокации.

Ступени роста по механизму винтовой дислокации

Спираль роста на грани (100) кристалла сахарозы.

Особенности роста кристаллических частиц Система: «хозяин» и «гость» различны по своей природе. Рd/слюда (напыление при 500ºС) Au/NaCl Au/NaCl (напыление при 150°С) (прогрев при 500°С)

Эпитаксия

Ері — над, сверху, taxis — расположение - Ориентированный рост одного кристалла на поверхности другого.

Где г – «гость», х – «хозяин», с – «среда», v_e – мольный объем «гостя», $\Delta \mu$ - изменение химического потенциала.

Эпитаксия

Ері — над, сверху, taxis — расположение - Ориентированный рост одного кристалла на поверхности другого.

Изменение термодинамического потенциала системы за счет образования зародыша гостя на поверхности хозяина:

 $\Delta G = -(L^2 h/v_r) \Delta \mu + L^2 \Delta W + 4Lh\sigma_{rc}$

$$\Delta W = \sigma_{rc} + \sigma_{rx} - \sigma_{xc} = W_{\kappa} - W_{a}$$

Равновесная форма зародыша из условия минимума поверхностной энергии:

$$h/L = \Delta W / W_{\kappa} = 1 - W_a / W_{\kappa}$$

Размер критического зародыша из условия минимума ΔG :

$$L_{\kappa p} = 4 \upsilon_{r} \sigma_{rc} / \Delta \mu;$$
 $h_{\kappa p} = 2 \upsilon_{r} \Delta W / \Delta \mu;$ $\Delta G_{\kappa p} = 16 \upsilon_{r} \sigma^{2}_{rc} \Delta W / \Delta \mu^{2}$
Если хозяин и гость имеют кубическую решетку с одинаковым межатомным расстоянием а:

$$\Delta \mathbf{W} = (\mathbf{e}_{rr} - \mathbf{e}_{rx})/a^2$$

Где е_{гг} – энергия взаимодействия между атомами гостя, е_{гх} – энергия адсорбционного взаимодействия гость – хозяин.

Механизмы формирования частиц или пленок "гостя", нанесенного на поверхность "хозяина"

Механизм Франка-ван-дер-Мерве (Frank-van der Merve, FM):

- ✓ Послойный рост полимолекулярных (полиатомных) пленок;
- ✓∆W < 0;
- ✓ Не требует пересыщения;
- ✓ $\upsilon_{r}\Delta W/a \approx e_{rr}$ и $e_{rx} < \Delta \mu < 0$.

Реализуется для пар изоструктурных металлов (Au/Ag, Fe/Au) и полупроводников с очень близкими параметрами решеток.

[1] Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: Из-во СО РАН, 2002, - 414 с.
 [2] Промышленный катализ в лекциях № 2. 2005. Под ред. проф. А.С. Носкова. – М.: Калвис, 2005.-128 с.

Механизмы формирования частиц или пленок "гостя", нанесенного на поверхность "хозяина"

Механизм Фолмера – Вебера (Vollmer – Weber, VW):

- ✓ Механизм роста островков;
- ✓ $\Delta W \ge 0;$
- ✓ Необходимо пересыщения;
- ✓ Δa разница значений параметров решетки. Эпитаксия улучшается с уменьшением величины $\varsigma = 1 + a_x / \Delta a$, где a_x параметр решетки хозяина.

Осаждение благородных металлов на поверхности щелочно-галоидных кристаллов и других солей, поверхности оксидов и графита.

[1] Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: Из-во СО РАН, 2002, - 414 с.
 [2] Промышленный катализ в лекциях № 2. 2005. Под ред. проф. А.С. Носкова. – М.: Калвис, 2005.-128 с.

Механизмы формирования частиц или пленок "гостя", нанесенного на поверхность "хозяина"

Механизм Странского - Крастанова (Stransky – Krastanov, SK):

- ✓ Механизм роста «слой плюс островки»;
- ✓ $\Delta W < 0$ для первого слоя, но адгезия трехмерных частиц существенно меньше и $\Delta W > 0$.

Осаждение Ад или Au на Si(111).

[1] Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: Из-во СО РАН, 2002, - 414 с.
 [2] Промышленный катализ в лекциях № 2. 2005. Под ред. проф. А.С. Носкова. – М.: Калвис, 2005.-128 с.

Процесс слоевого роста

Начальная стадия

Стадия продолжающегося роста

Кристаллография: объем - поверхность

Строение поверхности твердого тела можно рассматривать исходя из особенностей строения объемной фазы.

Строение поверхности твердого тела определяется однозначно лишь как граница раздела для данных контактирующих фаз: твердое тело / вакуум; твердое тело / газ...

К.Кэмболл (1970 г): Изучая монокристаллы в условиях CBB – можно оказаться заточенным в башне из «слоновой кости».

Структурная примитивная ячейка

Точки двумерной кристаллической решетки

Вектор трансляции кристаллической решетки $\mathbf{T} = I_1 \mathbf{a}_i + I_2 \mathbf{b}_i$, где I_1 и I_2 целые числа.

Структурная примитивная ячейка

Точки двумерной кристаллической решетки

Вектор трансляции кристаллической решетки $\mathbf{T} = I_1 \mathbf{a}_i + I_2 \mathbf{b}_i$, где I_1 и I_2 целые числа.

Плоские примитивные ячейки — использование векторов таких примитивных ячеек для трансляции позволяет получить примитивную кристаллическую решетку.

Выбор примитивной ячейки (двумерный случай)

Примитивная ячейка – простейший параллелограмм с минимальной площадью, имеющий в качестве сторон векторы **а** и **b**.

Двумерные решетки Браве,

используемые для описания поверхностных структур

Решетка	Элементарная ячейка
Косоугольная	Параллелограмм; $a \neq b$, $\phi \neq 90^{\circ}$
Квадратная	Квадрат; $a = b$, $\phi = 90^{\circ}$
Гексагональная	60°-ный ромб; <i>a</i> = <i>b</i> , φ = 120°
Примитивная прямоугольная	Прямоугольник; $a \neq b$, $\phi = 90^{\circ}$
Центрированная прямоугольная	Прямоугольник; $a \neq b$, $\phi = 90^{\circ}$

Металлы кристаллизуются в плотных упаковках: объемно и гранецентрированной кубической и гексагональной решетках.

(211)

[01]]

0111

Металлы кристаллизуются в плотных упаковках: объемно и гранецентрированной кубической и гексагональной решетках.

[011]

[01]]

(100)

Расположение атомов на низкоиндексных плоскостях в гране-центрированной решетке.

Штрихами показана примитивная поверхностная ячейка

Идеальные поверхности с малыми индексами

Реконструкция поверхности

	Объем	Поверхность
Au	квадратичная структура (100)	гексагональная (100)
Si	алмазоподобная тетрагональная структура	сверхструктура (7 × 7)

Схематическое представление орбиталей поверхностного атома на плоскости (111) ГЦК

Различие адсорбционного, каталитического и реакционного поведения.

Кристаллическое строение грани кристалла металла определяет направленность орбиталей поверхностных атомов.

Изменение взаимодействия атомов поверхностного слоя, как результат, перегруппировка поверхностных атомов с образованием наиболее устойчивой конфигурации.

1- орбитали, выходящие под углом 35°16' к плоскости

3 4 Å

- 2 орбитали, выходящие под углом 54°44' к плоскости
- 3 связывающие орбитали, лежащие в плоскости поверхности

«Реальная» поверхность металла

Ковалентные кристаллы

C (2s2p³)

Соединения элементов III и V, II и VI групп: GaAs, InSb, ZnS, CdTe.

Ковалентные кристаллы

Элементарные ячейки для поверхностей ковалентных кристаллов по данным ДМЭ

Кристалл	Грань	Тип ячейки	Устойчивость до температур, °С	Примечание
Алмаз	(111)	1×1	900	1 · · · · · · · · · · · · · · · · · · ·
	(100)	2×2	>900	and the second second states are second
	1.11.202	2×1		and the second second second
Кремний	(111)	2×1	210	Образуется при сколе. При нагре- вании необратимо переходит в (7×7)
		7×7	870	Структуры обратимы при нагреве
		1×1	>870	и охлаждении
	(100)	2×1	1100	 Market and the second se
	(110)	4×5	600	Структуры обратимо переходят
		2×1	600 - 750	при нагреве и охлаждении
		5×1	>750	a series and the second second second
	(511)	3×1	620	
	(311)	3×2	750	e de la companya de l
	(211)	2×4		 Additional (Contraction)
an attack	(331)	13×2	800	an zermen einen stelle filt der zu
- Y - 11	(510)	1×2	700	Contract of the second second
10 TO 10 10 10	(210)	2×2	850	
Германий	(111)	1×1	130	Скол при гелиевых температурах
		2×1		Образуется при сколе. При нагре- вании необратимо переходит в (2×8)
		2×8	>130	
1994 - Selfa	(100)	2×1		Устойчива при температурах ни-
2	(110)	c (8×10)	1780m · · · · · ·	же 380 °С
1.11.12.14	(17 15 1)	2×1	sili - sang	Устойчива в интервале 380 – 430 °С
Арсенид	(111)	2×2	Pittin - saara	reader (1911) when the second
галлия	(111)	3×3	520	
	(110)	1×1	245 C - 1	New Street Street of a street of the
	(100)	1×1		Construction and the second
	(100)	6×6	1	or in the approximation of the X
		8×8	1	a sense a la traca la sense de tracas

Ковалентные кристаллы

По данным ДМЭ:

✓ Структура поверхностных слоев, как правило, отлична от соответствующих плоскостей в объеме кристалла;

✓ Несмотря на тождественность структуры объема кристаллов алмаза, кремния и германия, строение их поверхности различно;

✓ Для большинства поверхностных структур наблюдаются взаимные переходы при изменении температуры, своеобразные «двумерные фазовые переходы» двух типов: порядок – беспорядок и порядок – порядок.

Поверхность ионных кристаллов

Наиболее характерные структуры ионных кристаллов

Поверхность: изменение симметрии кристаллического поля на поверхности ионных кристаллов.

Смещение ионов из своих положений, характерных для параллельных плоскостей в объеме кристалла.

Характерное смещение

Катионы в глубь кристалла

Анионы наружу кристалла

Поверхность ионных кристаллов

Расчет смещений ионов, нормальных к идеальной плоскости (100), в единицах расстояния между ближайшими соседями.

Соединение	Смещение		
	катионы	анионы	
LiF	-0.0697	0.0014	
NaF	-0.0393	-0.0217	
NaCl	-0.0871	0.0356	
NaBr	-0.1147	0.0727	
Nal	-0.1395	0.0947	
KF	-0.0133	-0.0335	
KCI	-0.0335	-0.0047	
KBr	0.0465	0.0021	
KI	-0.0647	-0.0229	

- смещение в объем.

Поверхность ионных кристаллов

Вдали от ОК:

В приповерхностном слое энергия взаимодействия ионов отличается от таковой в объеме.

Перераспределение дефектов в приповерхностном слое.

Скопление вакансий положительного знака в приповерхностном слое.

Схема современного электронного микроскопа

Электронная микроскопия (ЭМ)

ЭМ- изображение частицы Ni на SiO₂ [1]

Электронная микроскопия (ЭМ)

ЭМ- изображение частицы Ni на SiO₂ [1]

[1] Пул Ч., Оуэнс Ф., Нанотехнологии. М.: Техносфера, 2005, - 334 с.

Электронная микроскопия (ЭМ)

ЭМ- изображение частицы Ni на SiO₂ [1]

Электронная микроскопия (ЭМ)

ЭМ- изображение частицы Ni на SiO₂ [1]

Модель наночастицы, воссозданная на основе полученных данных.

[1] Пул Ч., Оуэнс Ф., Нанотехнологии. М.: Техносфера, 2005, - 334 с.

Сканирующая зондовая микроскопия (СЗМ)

Scanning probe microscopy (SPM)

Организация процесса сканирования в СЗМ

Основные элементы СЗМ²:

- 1. Зонд.
- 2. Сканер.
- 3. Системы приближения зонда к образцу.
- 4. Система обратной связи.
- 5. Система управления сканированием и сбором данных.
- 6. Система виброизоляции.

¹ Howland R.S. How to Buy a Scanning Probe Microscope. Stanford: Park Scientific Instruments, 1993. - 44 р.
 ² Шайхутдинов Ш.К., Кочубей Д.И. Исследования гетерогенных каталитических систем и их моделей методом сканирующей туннельной микроскопии // Успехи химии. - 1993. - Т. 62, № 5. - С. 443 – 453.

Лекция-3

МИКРОСКОПИЯ

Сканирующая туннельная микроскопия (СТМ) Scanning tunneling microscopy (STM)

Туннельный ток – первое приближение: It ~ Ut×exp(-b×d)

Где: Ut – напряжение, d – расстояние между иглой и локальным местом поверхности (величина туннельного промежутка).

Информация, получаемая методом СТМ:

морфология поверхности

¹ Howland R.S. How to Buy a Scanning Probe Microscope. Stanford: Park Scientific Instruments, 1993. - 44 р.
 ² Шайхутдинов Ш.К., Кочубей Д.И. Исследования гетерогенных каталитических систем и их моделей методом сканирующей туннельной микроскопии // Успехи химии. - 1993. - Т. 62, № 5. - С. 443 – 453.

СТМ - исследование: формирование моноатомных островков NO/Pt(100)-(1x1) в ходе адсорбции NO на поверхности монокристалла Pt(100)-(5x20)*

*Данные предоставлены Р.И. Квоном (Институт катализа СО РАН).

СТМ - исследование: формирование моноатомных островков NO/Pt(100)-(1x1) в ходе адсорбции NO на поверхности монокристалла Pt(100)-(5x20)* $T_{ads} = 300K$ $T_{ads} = 570K$

СТМ - исследование: формирование моноатомных островков NO/Pt(100)-(1x1) в ходе адсорбции NO на поверхности монокристалла Pt(100)-(5x20)* $T_{ads} = 300K$ $T_{ads} = 570K$

СТМ - исследование: формирование моноатомных островков NO/Pt(100)-(1x1) в ходе адсорбции NO на поверхности монокристалла Pt(100)-(5x20)* $T_{ads} = 300K$ $T_{ads} = 570K$

Температура адсорбции NO влияет скорее на плотность островков, а не на их размер. Высота островков ~1.4 А.

Механическая модификация поверхности с помощью СТМ Прививка (nanografting)

Подложка: Au/слюда. $C_{18}SH$ – октадекантиол (HS(CH₂)₁₇CH₃), $C_{10}SH$ – декантиол (HS(CH₂)₉CH₃).

Механическая модификация поверхности с помощью СТМ

Перетаскивание одиночных атомов

Возможности СЗМ. Нанолитография СТМ

Ксенон на никеле

D.M. Eigler, E.K. Schweizer. Positioning single atoms with a scanning tunneling microscope. *Nature 344, 524-526 (1990).*

Возможности СЗМ. Нанолитография СТМ

Круговая структура (коралл) с радиусом 71.3 А собрана на Cu(111) из 48 индивидуальных атомов Fe с использованием иглы низкотемпературного CTM.

Визуализация поверхностных электронных состояний

¹ M.F. Crommie, C.P. Lutz, D.M. Eigler. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218-220 (1993).

Лекция-3

МИКРОСКОПИЯ

Атомно-силовая микроскопия (ACM) Atomic force microscopy (ASM)

Общая блок-схема атомносилового микроскопа (оптическая регистрация изгиба консоли) [1]

[1] Миронов В.Л. Основы сканирующей зондовой микроскопии. -М:Техносфера, 2004. -144с.

Лекция-3

МИКРОСКОПИЯ

Атомно-силовая микроскопия (АСМ)

[1] Миронов В.Л. Основы сканирующей зондовой микроскопии. -М:Техносфера, 2004. -144с.

Возможности СЗМ. Нанолитография АСМ¹

Векторная динамическая силовая АСМ – литография (наночеканка).

(размер скана 220нм×220нм)

(размер скана 2.5мкм×2.6мкм)

Рис. 5-6. Пример векторной динамической силовой литографии (а) (размер скана 220х220 нм²) в виде регулярного массива углублений (питов) и растровой литографии (размер скана 2,5х2,6 мкм)

¹Сканирующая зондовая микроскопия, спектроскопия и литография. Учебное пособие. А.В. Круглов, Д.О. Филатов. Москва-Нижний Новгород-Санкт-Петербург. 2004. С. 159.

Возможности СЗМ. Нанолитография АСМ¹

АСМ - литография, осуществляемая путем локального окисления поверхности с помощью проводящего зонда.

(размер скана 500нм×500нм)

(размер скана 2.3мкм×3.0мкм)

¹Сканирующая зондовая микроскопия, спектроскопия и литография. Учебное пособие. А.В. Круглов, Д.О. Филатов. Москва-Нижний Новгород-Санкт-Петербург. 2004. С. 159.

АСМ записывающее устройство

Плотность записи – 1200 ГБит/дюйм² (силовые импульсы 60 нН за 1 тсек)

Скорость считывания – 1.25 МБит/ с

time t[µs]