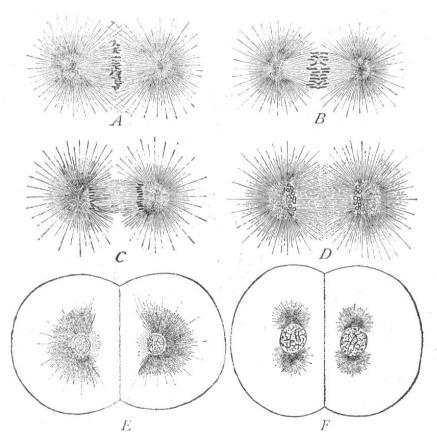
Генетика клеточного цикла

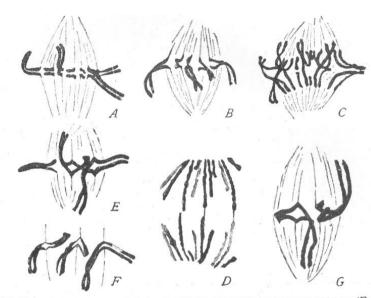
Электронно-лекционный курс Глава 1

Электронно-лекционный курс подготовлен в рамках реализации Программы развития НИУ-НГУ

■ Составитель Гусаченко А.М.


 © Новосибирский государственный университет, 2012

Универсальность механизмов митоза эукариот


Вильсон, 1934

Морской ёж

Рис. 58. Более поздние стадии митоза в яйце морского ежа, Toxopneustes ($A-D-\times 1~000;~E,~F-\times 500$).

Корешок растения

Рис. 57. Прикрепление хромосом во время митоза в кончиках корня (Грегуар). A-D—Galtonia, концевое прикрепление; E, F—Allium, концевое медиональное, субмедиональное; G—Trillium, субтерминальное, промежуточное.

Вильсон, 1934

Универсальность механизмов митоза эукариот

Нарушения митоза в раковых клетках человека

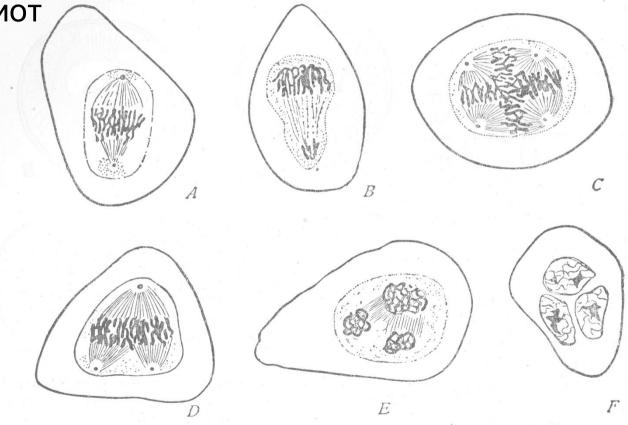
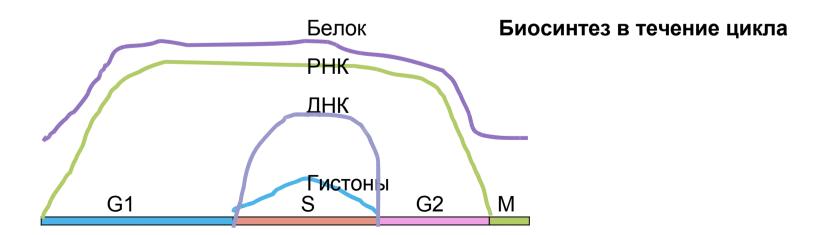


Рис. 73. Патологические митозы в раковых клетках человека (Галеотти).

A—асимметрический митоз с неодинаковыми центральными тельцами; B—более поздняя стадия, видно неравномерное распределение хромосом; C—четырхполюсный митоз; D—трехполюсный митоз, E—более поздняя стадия; F—трехядерная клетка, образовавшаяся в результате этого митоза.

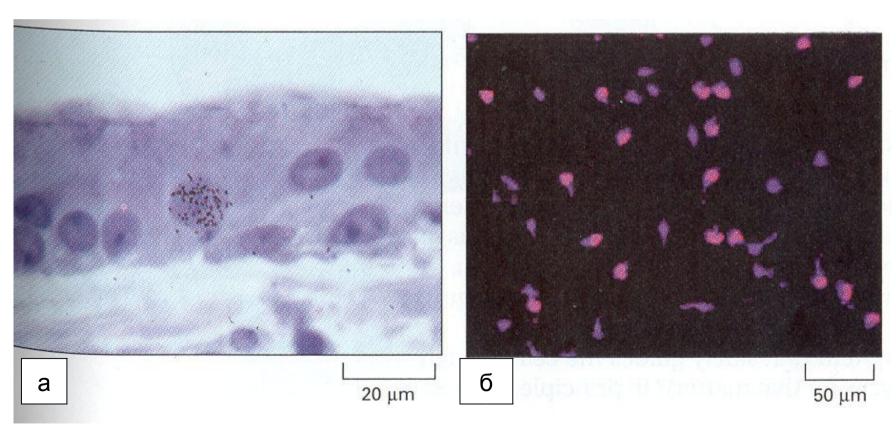

Клеточный цикл: события в клетке от деления до деления

•Морфологические маркеры цикла:

Интерфаза (диффузное ядро) – митоз (видимые хромосомы)

•Биохимические маркеры цикла:

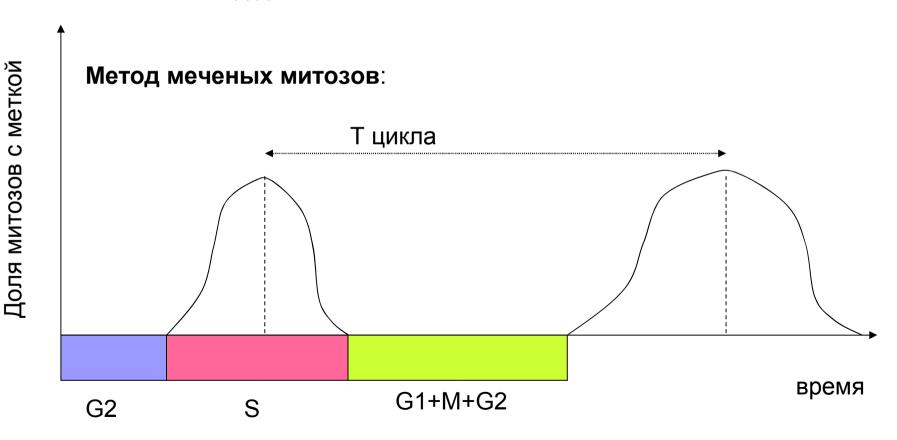
Синтез ДНК (включение меченых предшественников)


Периоды клеточного цикла

Длительность периодов клеточного цикла делящейся клетки млекопитающего

Клетки в организме и в культуре: выявление клеток в S-фазе

Часть популяции включает искуственные предшественники ДНК: а — Н³-тимидин; б — бромодезоксиуридин BdU (окраска антителами на BdU)


Альбертс, 2000

Определение длительности клеточного цикла и его периодов

Длительность цикла и его периодов:

- прямое наблюдение и киносъёмка интерфазы и митоза,
- метод меченых митозов,
- метод двойной метки

Распределение клеток по содержанию ДНК Данные с проточного цитофлуориметра

Можно оценить относительную длительность каждой фазы

В синхронизированной культуре проследить изменения содержания ДНК в течение всего цикла

cells in G₁ phase number of cells cells in G2 and M phases cells in S phase relative amount of DNA per cell

Альбертс, 2000

70-е годы Основные события клеточного цикла:

- 1. Удвоение хромосом
- 2. Деление ядра и клетки

Проблемы клеточного цикла, на которые не было ответа:

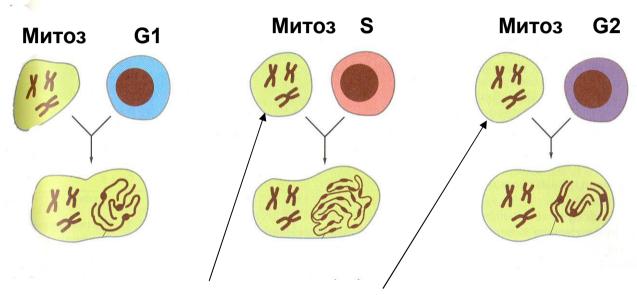
- 1. Как гарантировать завершенность каждого процесса до начала нового? (Репликации до начала деления)
- 2. Что гарантирует определенный порядок процессов? Например, что запрещает клетке делиться подряд без репликации? Реплицироваться несколько раз без деления?
- 3. Что координирует события цикла с ростом клетки?
- 4. Как осуществляется взаимодействие со средой?

Клетки в культуре

Как синхронизировать циклы клеток?

Синхронизация индукционная: обработка агентом, блокирующим (обратимо или нет) специфический этап в клетке

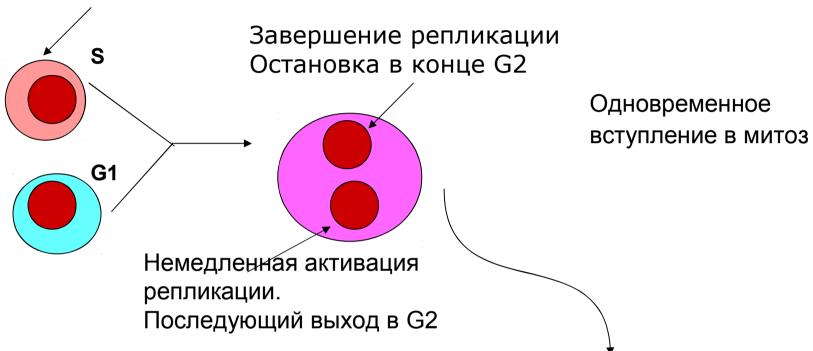
- гидроксимочевина блокируют репликацию остановка в G1
- колхицин, винбластин, колцемид блокируют веретено деления остановка в метафазе


Синхронизация селекционная: отбирают субпопуляцию клеток по их принадлежности к какой-либо фазе цикла.

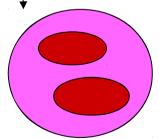
- -центрифугирование по массе разделяют популяции G1 и G2
- -смывают плохо прикрепленные митотические клетки получают популяцию в начале G1

Синхронизация естественная: деления дробления у амфибий и некоторых беспозвоночных

Опыты по слиянию клеток млекопитающих


фактор, стимулирующий митоз

•Существует фактор, стимулирующий митоз Доминирование митоза над остальными фазами


Альбертс, 2000

Факторы, стимулирующие S-фазу

- ■Существует фактор инициации репликации
- ■Есть точки контроля (checkpoints), которые останавливают клетку до завершения процесса (arrest)

Повторной репликации не Блокирование происходит. ререпликации Задержка в G2 G2 G1 Инициация и Синхронное прохождение вхождение в репликации **МИТОЗ**

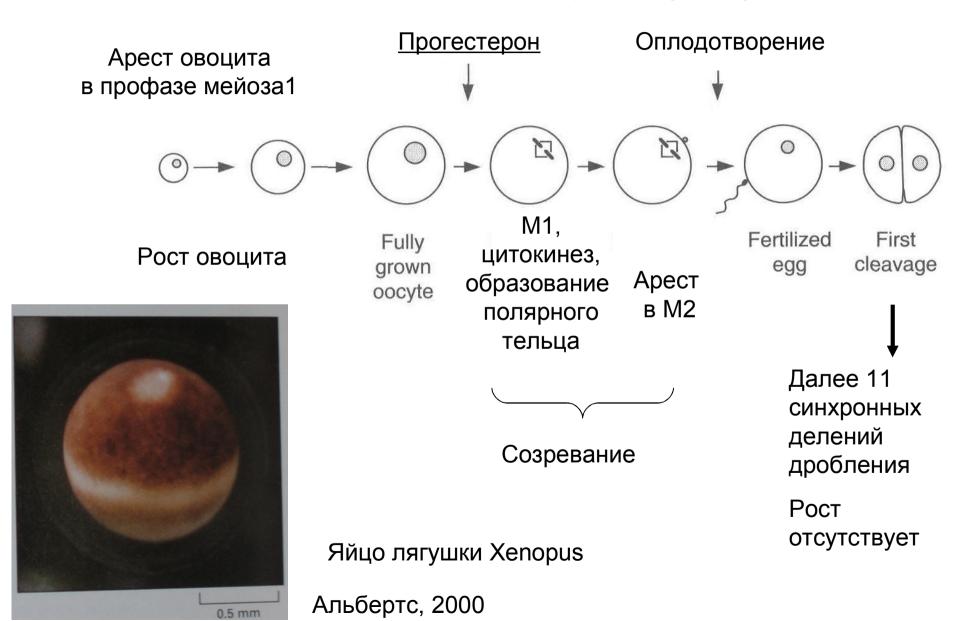
- •Блокирование повторной репликации
- •Арест в точке контроля G2-M

Повторной репликации не происходит. Блокирование повторной репликации Задержка в конце G2 G2 Завершение репликации Факторы, стимулирующие Синхронное Нормальное S-фазу вхождение в прохождение **МИТОЗ** цикла

- •Блокирование повторной репликации
- •Арест в точке контроля G2-M

Выводы

- •Существует фактор, стимулирующий митоз
- •Существует фактор инициации репликации
- ■Существует обратная связь (feedback control), которая отслеживает завершенность процесса
- ■Есть точки контроля (checkpoints), в которых клетка останавливается до завершения процесса (arrest). Например, арест в точке контроля G2-M
- •Повторная репликация блокирована
- •Митоз снимает блок репликации, лицензирует новую репликацию


Нобелевские лауреаты в области физиологии и медицины 2001 г:

Леланд Хартвелл / Тимоти Хант / Пол Нерс ()

- Ричард Тимоти (Тим) Хант, сэр (Sir Richard Timothy (Tim) Hunt) британский биохимик, лауреат Нобелевской премии в области медицины и физиологии 2001 года, награждённый за открытие регуляции клеточного цикла эукариот циклином и циклин-зависимыми киназами. Член Королевского общества.
- Леланд (Ли) Хартвелл (Leland H. (Lee) Hartwell) американский учёный, президент и директор Онкологического исследовательского центра Фреда Хатчинсона (Сиэтл). Награждён Нобелевской премией по физиологии и медицине 2001 года за открытие генов, участвующих в регуляции клеточного цикла, и вклад в его исследование.
- Пол Нерс, сэр (Sir Paul M. Nurse) британский биохимик, лауреат Нобелевской премии в области медицины и физиологии 2001 года, награждённый за открытие регуляции клеточного цикла эукариот циклином и циклин-зависимыми киназами. Член Королевского общества. Президент Рокфеллеровского университета.

Овогенез, мейоз и оплодотворение у лягушки

Эксперименты с выделенными яйцами лягушки. Роль MPF в активации мейоза.

MPF - maturation promotion factor

Progesterone
Transfer
cytoplasm

MPF
Transfer
cytoplasm

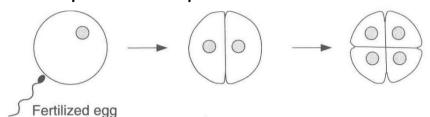
Арест Ранние в метафазе2 овоциты Прогестерон вызывает деление мейоза 1, цитокинез, образование полярного тельца, вступление в метафазу 2, арест

Инъекция цитоплазмы M2- ооцита в ранний ооцит вызывает те же события созревания ооцита без прогестерона. MPF

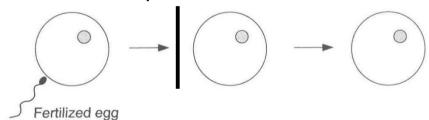
Инъекция цитоплазмы предыдущего ооцита вызывает такие же изменения, как воздействие прогестерона и MPF

Ингибирование белкового синтеза после воздействия прогестероном блокирует события созревания. Перенос цитоплазмы замещает белковый синтез.

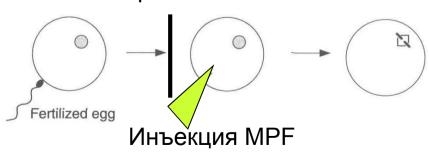
Murray A., Hunt T., 1993


выделены

из лягушки


Роль MPF в регуляции ранних эмбриональных митозов

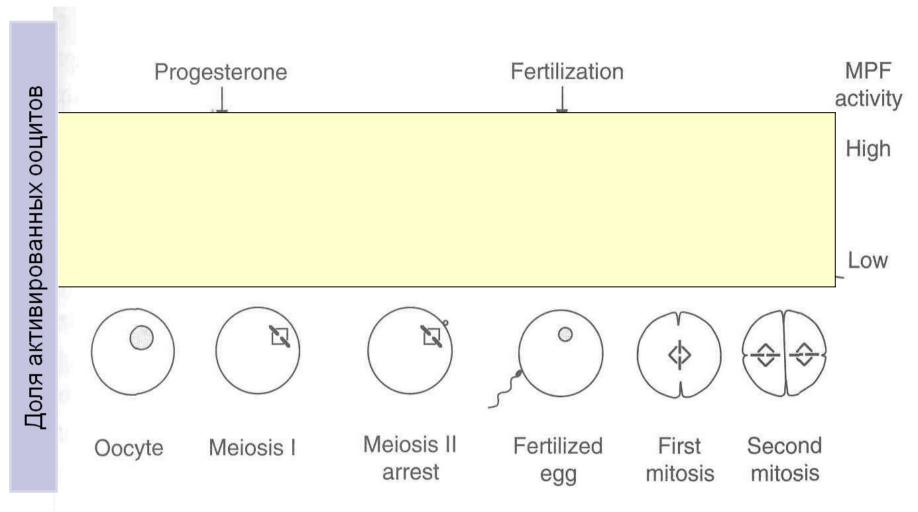
Нормальное развитие


Нормальное развитие

Ингибирование синтеза белка

Задержка делений

Ингибирование синтеза белка



Murray A., Hunt T., 1993

Инъекция MPF восстанавливает деления

- •Для появления MPF необходим синтез белка в предыдущей интерфазе •Лругие белки запасены материнским
- •Другие белки запасены материнским организмом

Изменение активности MPF в мейозе и ранних эмбриональных митозах лягушки

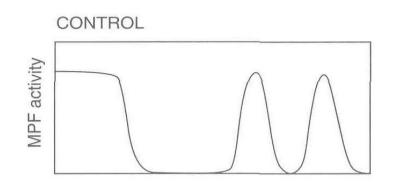
Реципиенты- ооциты в интерфазном аресте G2 Доноры – ооциты на следующих стадиях и бластоциты Подобные эксперименты с ооцитами других видов (клетки млекопитающих, морской звезды)

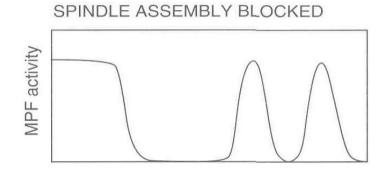
Стимуляция митозов

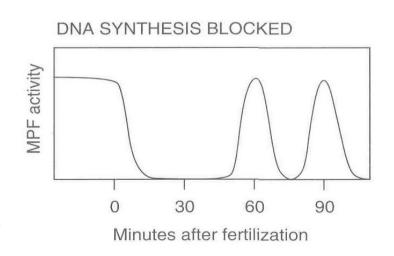
Общность для многих организмов, для мейоза и митоза.

MPF - maturation promotion factor переименовали в Metaphase PF или Mitosis PF

Осцилляция активности MPF в ранних эмбриональных митозах. Независимость реакций активации-инактивации от готовности клеток к делению

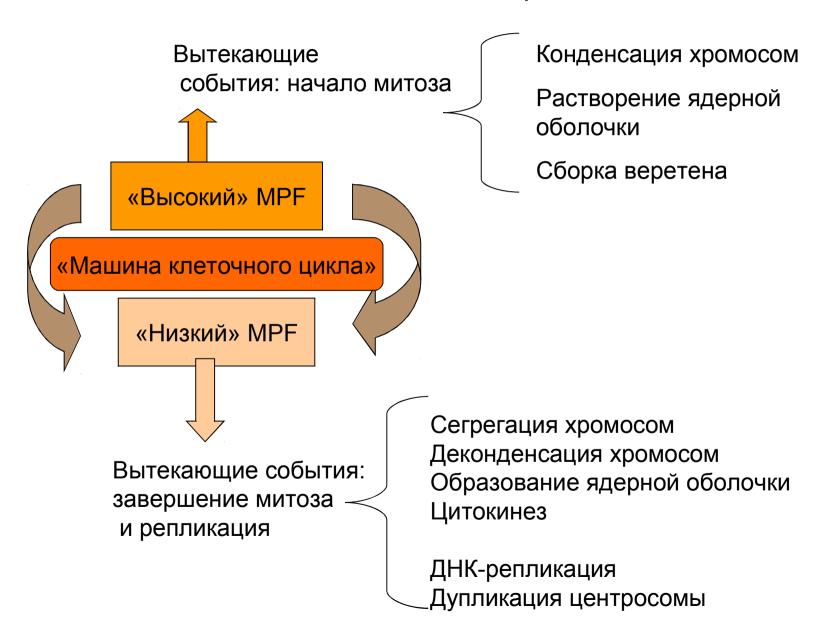

Нормальный эмбрион


Блокирование сборки веретена нокодазолом


Блокирование синтеза ДНК афидиколином

Где же обратная связь и точки контроля?

Murray A., Hunt T., 1993



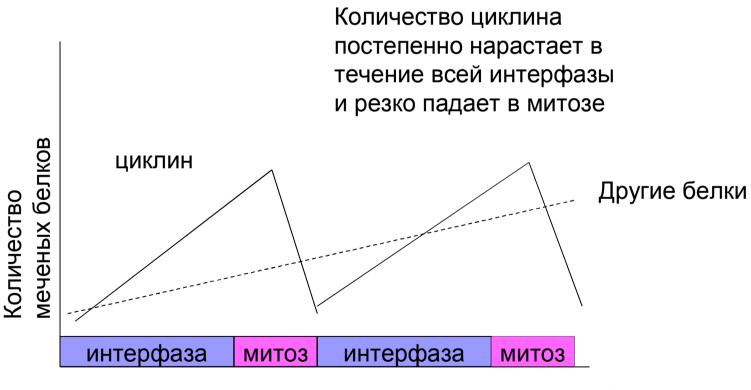
Модель клеточного осциллятора

Различия циклов Ранние Соматические эмбриональные клетки клетки Сборка веретена Сбори ABTOHOMHAA CHCTEMA Автономная система Способна воспринимать сигналы Сегрегация Сегрегация хромосом хромосом Деление клетки Деление клетки ДНК-репликация ДНК-репликация Дупликация центросомы Дупликация центросомы

Мейоз и ранние эмбриональные митозы

Косвенные данные о существовании MPF – по видимым изменениям, происходящим в клетке

Появлению MPF всегда предшествует белковый синтез – поиск белка, синтезируемого к метафазе.


В остальном «машина» клеточного цикла работает автономно

Блокирование репликации и разрушение ядра не останавливает остальных событий цикла — это не типично для большинства клеток

Поиск белка, активирующего MPF. Открытие циклина

Измерение количества вновь синтезированных белков в двух первых циклах деления оплодотворенного яйца морского ежа. Инкубация с мечеными аминокислотами. Пробы каждые 10 мин.

время

Циклины нашли у всех эукариот: дрожжей, кольчатых червей, насекомых, моллюсков, иглокожих, амфибий, млекопитающих и растений

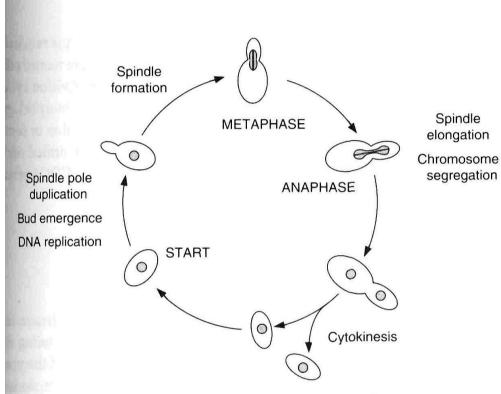
Первая простая модель активации MPF:

Аккумуляция циклина активирует MPF и митоз: циклин- часть

MPF?

Активный MPF вызывает деградацию циклина и выход из

митоза


Деградация циклина инактивирует МРГ

Как соотносятся циклин и MPF? Несоответствие представлений о цикле, которые сложились после изучений клеточных культур млекопитающих и цикла ранних эмбриональных делений.

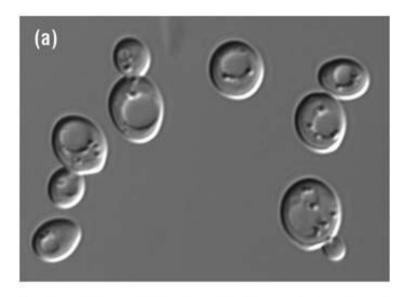
Необходимость нового объекта

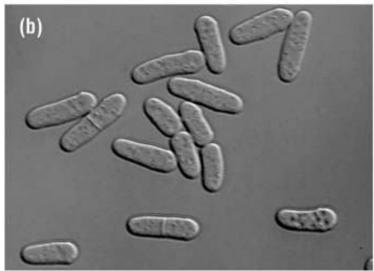
Дрожжи Saccaromyces cerevisia

Murray A., Hunt T., 1993

Одноклеточный организм, гаплоидная и диплоидная фазы, короткий клеточный цикл (90 мин), закрытый митоз, видимые маркеры клеточного цикла, простая среда для культивирования, возможность использовать микробиологические методы

20 µm




Дрожжи

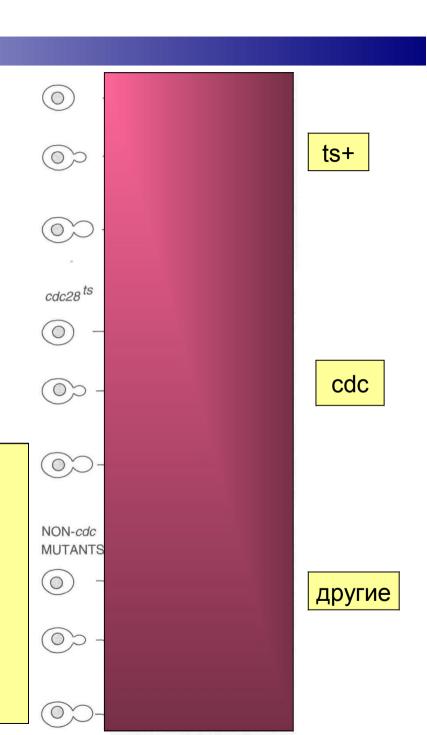
Пекарские Saccaromyces cerevisia (a)

Пивные Schizosaccharomices pombe (b)

From The Cell Cycle: Principles of Control by David O Morgan

@ 1999-2007 New Science Press

Селекция мутаций cdc: Cell division cycle


Обработали мутагеном.

Температурочувствительные ts -условные мутации.

Штаммы размножают при комнатной температуре – пермиссивная: 20-23°

Асинхронную культуру переносят в условия 35-37° - рестриктивная температура.

- •Часть клеток продолжают клеточный цикл без изменений клетки ts+
- •Часть клеток доходит до определенной фазы и останавливается cdc-мутанты
- •Часть клеток останавливаются сразу в той фазе цикла, в которой были мутации в генах домашнего хозяйства

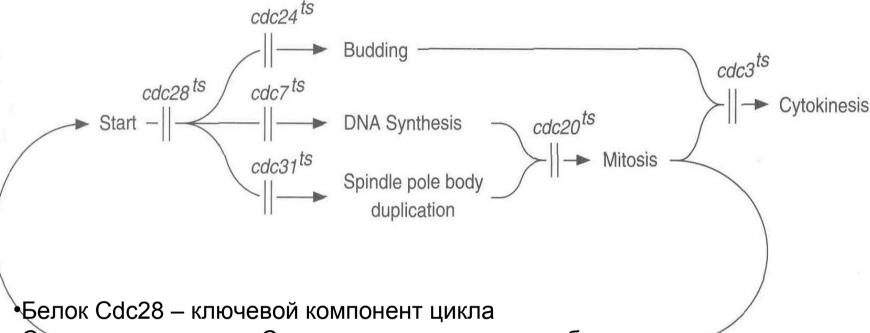
Температурочувствительные мутации

Мутантов растят при 20° на богатой среде, потом переносят в рестриктивную температуру.

Ts- мутации распадаются на два класса:

Блокируют отдельные события цикла (cdc7 ts, cdc24 ts, cdc31 ts)

Spindle Pole body NO DNA replication Вырастают больше других,


но не делятся

DNA replication

•Блокируют все события клеточного цикла (cdc28 ts)

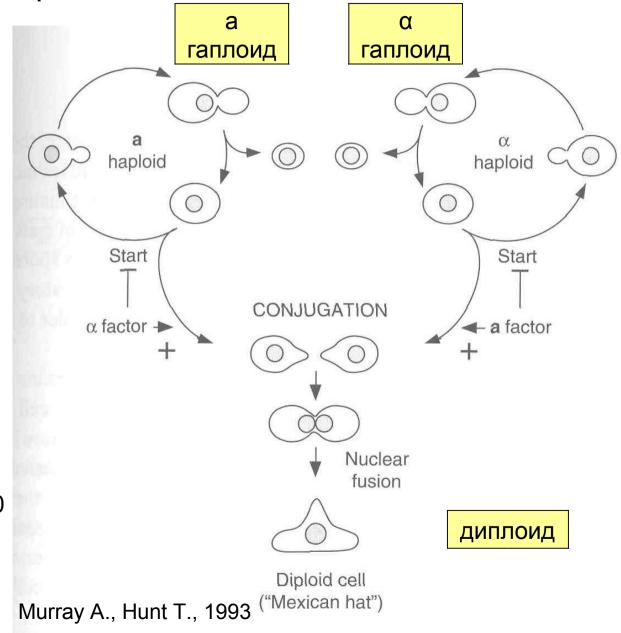
Murray A., Hunt T., 1993

Логическая схема клеточного цикла (мутации cdc)

- •Существует переход Старт, после которого неизбежны почкование, репликация и удвоение клеточного центра
- •Существует переход Старт, после которого почкование, репликация и удвоение клеточного центра становятся нечувствительны к утрате функции Cdc28+
- •Старт конец процесса перехода к репликации, точка ареста в G1 выход в G0
- •Переход через Старт- вход в новый цикл репликации и деления.

 Миггау А., Hunt T., 1993

Половой процесс у дрожжей


Два партнера для конъюгации: а и α,

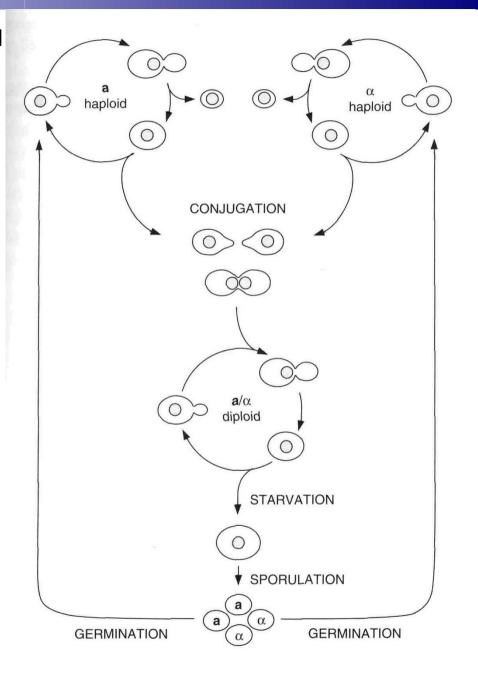
Выделяют сигнал – пептид а или α,

На поверхности клеток рецепторы к ним – не к своим, а к противоположным

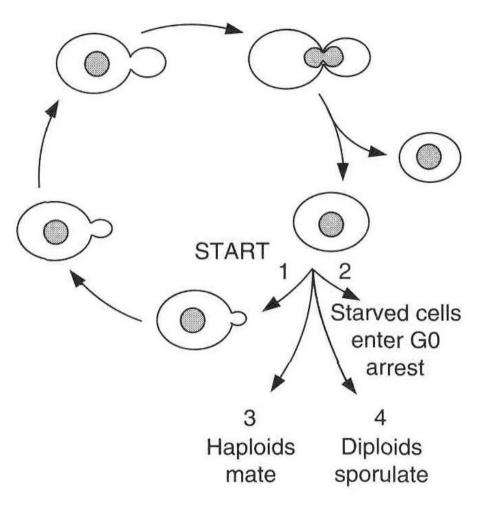
Для слияния клетки должны быть в одной фазе. Фактор слияния останавливает клетки в точке Старт - выход в G0

Обработку α-фактором используют для синхронизации культуры

Половой процесс у дрожжей


Если диплоидную клетку поместить в обедненную среду, она вступит в мейоз

Споры всегда двух типов, но после одного митоза может произойти «переключение типа спаривания» (mating type switching).

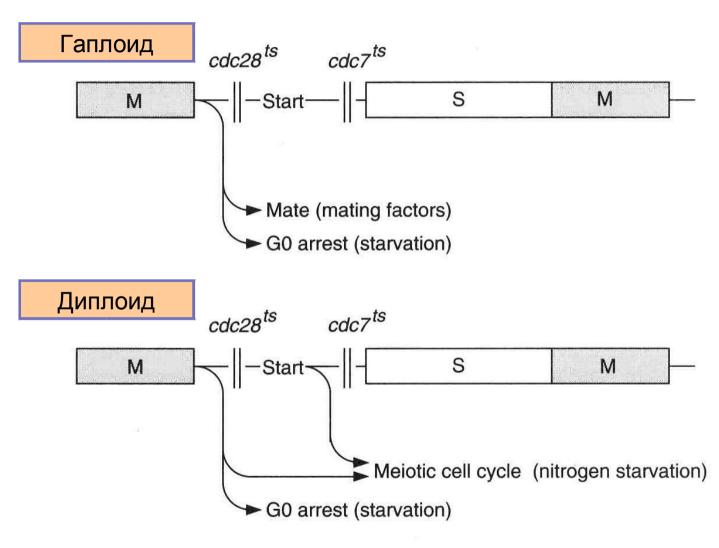

Мутации, предотвращающие переключение, используют для ведения линий в гаплоидной фазе

Диплоидную фазу используют для установления комплементации

Murray A., Hunt T., 1993

Координация роста клетки и фаз репликации-деления

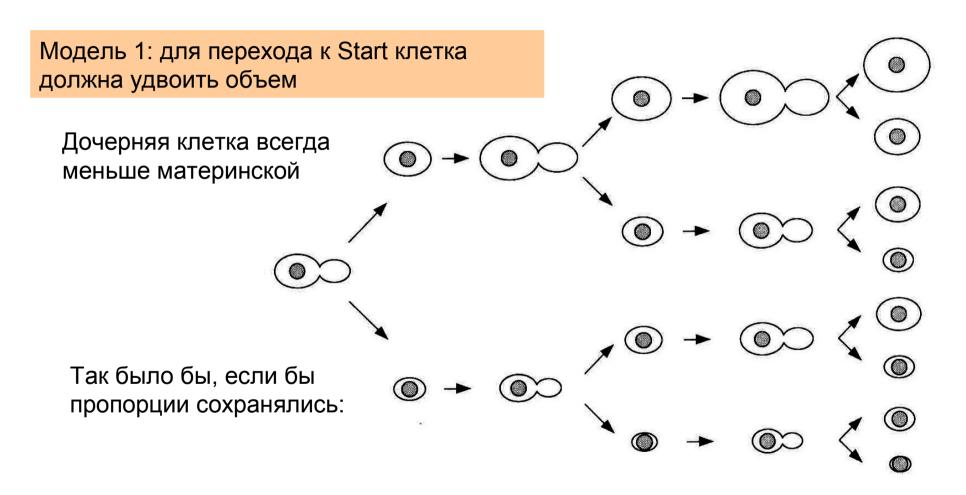
Условия культивирования влияют на судьбу дрожжевой клетки. Варианты:

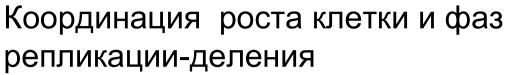

- 1. В нормальных условиях пройти Старт и реплицировать ДНК
- 2. В условиях голода войти в фазу отдыха G0-арест
- 3. Для гаплоидной клетки вступить в половой процесс
- 4. Для диплоидной клетки в споруляцию в условиях голода

Для клетки многоклеточного организма существует R – точка рестрикции – аналог точки Старт. В ней клетка выходит в G0 и ждет сигнала извне – ростового фактора – после чего перейдёт к репликации.

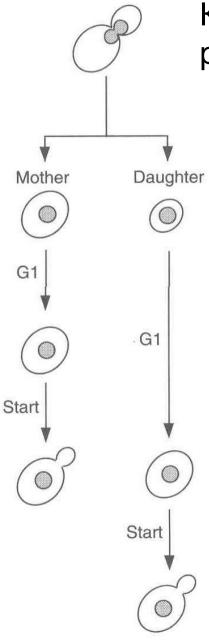
Murray A., Hunt T., 1993

w


Различия в циклах гаплоидов и диплоидов


Murray A., Hunt T., 1993

Координация роста клетки и фаз репликации-деления



Модель 2: существует пороговая масса клетки, до которой она не может выйти в Старт.

Дочерним клеткам требуется больше времени, чем материнским

Мутанты cds25 и cdc35 при рестриктивной температуре ведут себя как cdc28 (не делятся), но уже и не растут. Входят в G0, даже когда питательные вещества в норме. Нарушена связь со средой, рецепция питательных веществ. Гены cds25 и cdc35 играют роль в «точке контроля».

Точка контроля (checkpoint) - проверка готовности клетки к переходу в новую фазу и задержка в случае несоответствия

Точка рестрикции (R) - стадия, на которой клетка может принимать внешний сигнал, т.е имеет рецептор для гормона или ростового фактора

Система обратных связей - положительных и отрицательных

- 1. Координация продвижения по циклу с ростом клеток
- 2. Регуляция цикла сигналами извне