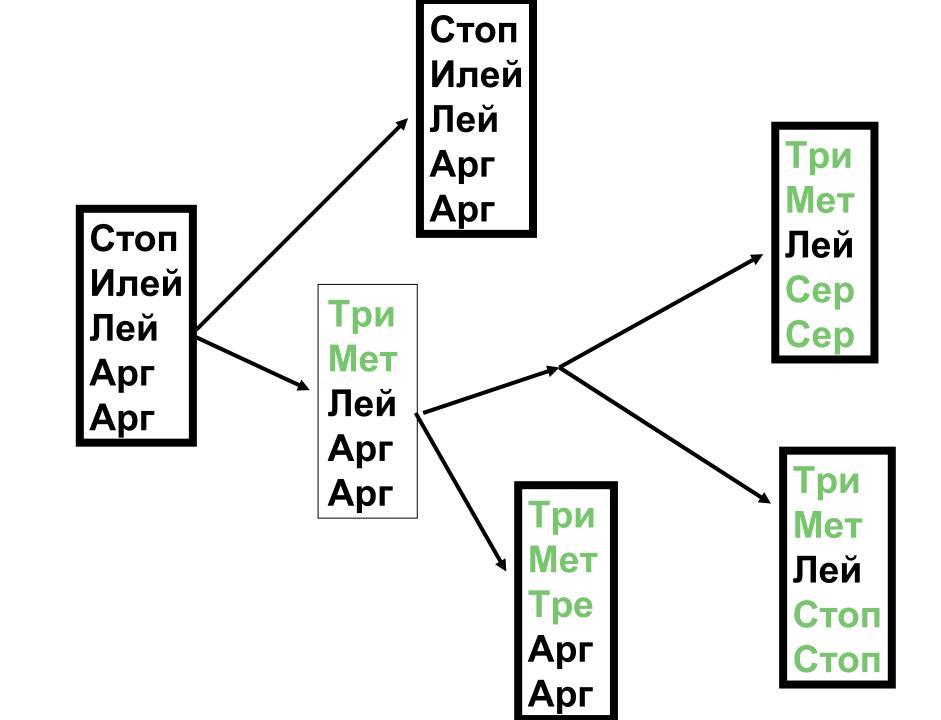
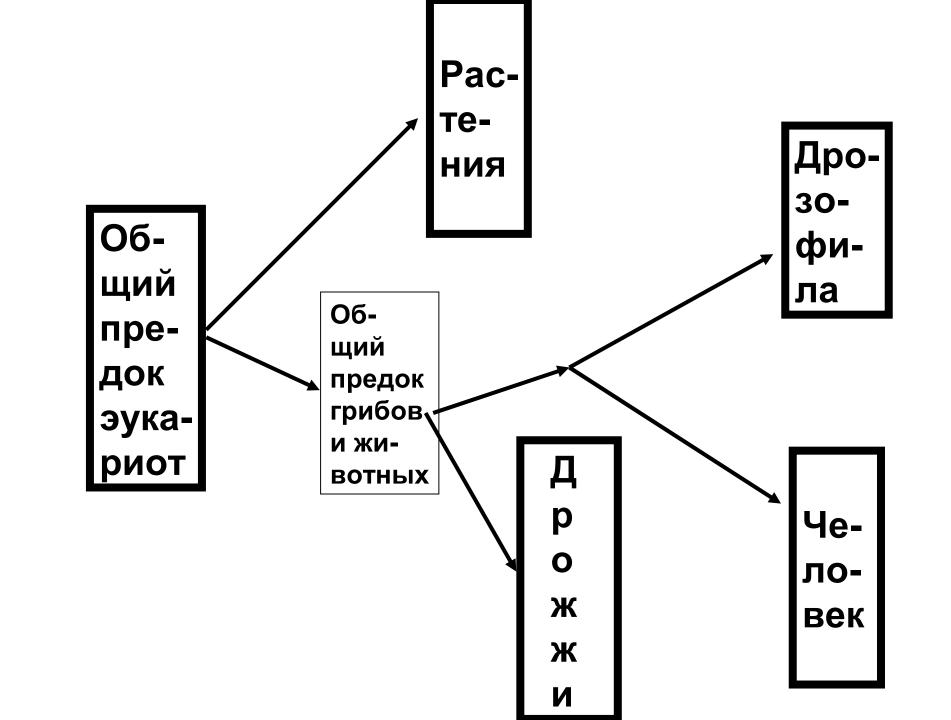

Тема 2. 4. Симбиотическая теория происхождения митохондрий и пластид

Первые высказывания о симбиотическом происхождении клеток эукариот мы находим уже в работах конца XIX века: 1887 г., 1907 г. А.С.Фаминицын 1889 г. С.Швенденер 20-е годы XX в. К.С.Мережковский, Б.М.Козо-Полянский В 60-е г. XX в. эту тему развивала Линн Маргелис

	Цитозоль, ядро Митохондрии, пластиды, прокариоты		
Подавление транскрипции	Альфа-аманитин	Акридин, бромистый этидий	
Подавление трансляции	Циклогексемид Анизомицин	Хлорамфеникол, тетрациклин эритромицин, стрептомицин, канамицин и др.антибиотики	




Филогенетическое дерево, построенное по результатам сравнения последовательности нуклеотидов в гене рРНК малой субъединицы рибосом

Отличия в генетическом коде митохондрий указывают скорее на особенности их эволюции как изолированных структур, а не на древность их происхождения

Сравнение генетического кода митохондрий разных видов по сравнению с универсальным кодом

Кодон	Универсальный код	Митохондриальный код <i>Кукуруза Дрозофила Дрожжи Человек</i>				
УГА	Стоп	Стоп	Три	Три	Три	
АУА	Илей	Илей	Мет	Мет	Мет	
ЦУА	Лей	Лей	Лей	Тре	Лей	
АГА	Арг	Арг	Сер	Арг	Стоп	
АГГ	Арг	Арг	Сер	Арг	Стоп	

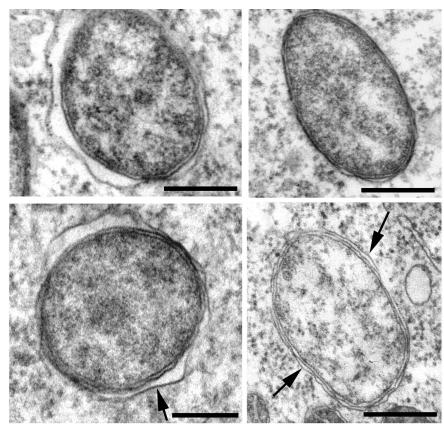
Размеры митохондриального генома у разных видов живых организмов

Информационная ёмкость митохондриальной ДНК и ДНК хлоропластов высших растений

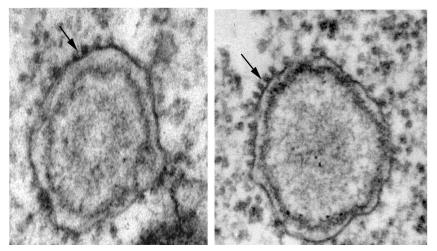
	Митохондрии разных видов						
	Чело	- Нема	- Аско-	Mox	Цветковое	Зелёная	Хлоро-
	век	тода	мицет		растение	водоросль	пласт
Размер ДНК, тыс.п.о.	17	17	75	187	367	16	~ 150
Число генов	37	17	35	67	53	12	~ 130
Число интронов	0	2	8	32	23	1	МНОГО
pPHK(16S + 23S)	2	2	2	2	2	2	2x4
pPHK (5S)	-	-	-	1	1	-	x2
тРНК	22	2	24	27	22	3	30
Гены рибосомных белк	OB -	-	1	16	7	-	~ 20
Белки ЦПЭ	11	11	4	14	13	7	~ 45%
Гены белков АТФ-синта	азы 2	2	3	4	4	-	3
Гены белков импорта и							
созревания	-	_	-	3	3	_	_

«Полуавтономность» митохондрий

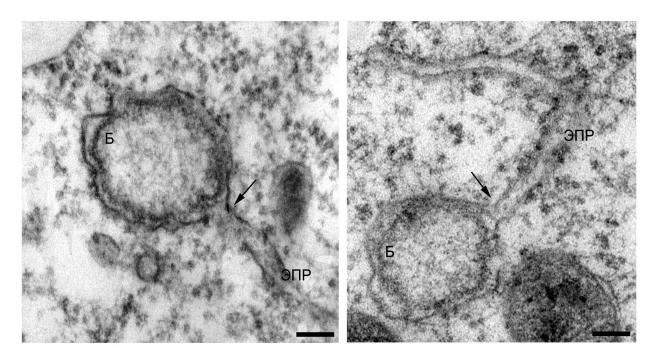
	Мито- хондрии	Ядро
Синтез мит-ДНК(факторы репликации)		+
Синтез мРНК	+	+
Трансляция рРНК	+	+
рибосомн.белки	+	+
тРНК	+	+
Аминоацил-тРНК-синтетазы		+
Факторы созревания РНК и белков		+
Транспорт (импорт) РНК и белков		+
ЦПЭ,АТФ-синтаза	+	+


При факультативном симбиозе также наблюдается согласованность работы геномов симбионта и клетки-хозяина. Это видно на примере развития событий при симбиозе бактерий Rhizobia и бобовых:

- 1.Клетки растения синтезируют специальное вещество, к которому прикрепляются бактерии.
- 2. Прикрепление активирует NOD-гены в бактерии.
- 3. Продукты NOD-генов активируют гены в клетках корешков.
- 4. Корешки деформируются, закручиваются, бактерии оказываются внутри клеточной массы. В клетках корешков перераспределяются ионы Са²+ и Н+. Перестраивается актиновый цитоскелет. Клеточная стенка частично гидролизуется. Инвагинирует плазматическая мембрана, образуется инфекционная нить. Она проходит через ряд клеток, при этом в каждой из них формируется кольцо из микротрубочек как перед митозом.
- 5. Клетки с бактериями активно делятся.
- 6. Клеточная стенка бактерий разрушается и вокруг каждой бактерии замыкается мембрана бывшей инфекционной нити.
- 7. Размножаются бактериоиды. Клетка полностью обеспечивает их метаболизм.
 - 8. В бактериоидах идёт одна реакция:


$$N_2 + 8H^+ + 8e^- + 16 MgATP \rightarrow 2NH_3 + H_2 + 16 MgADP + 16 P$$

Известны симбионты животных клеток, которые на встречаются вне клеток. Например, бактериоиды рода Wolbachia в клетках Drosophila melanogaster.


Только анализируя их последовательность ДНК, можно установить достоверно принадлежность симбиотических и свободноживущих видов к одному роду.

Бактериоиды рода Wolbachia в клетках Drosophila melanogaster

Бактериоиды неустановленного вида внутри ЭПС клеток D. melanogaster

